KENDRIYA VIDYALAYA SANGATHAN AHMEDABAD REGION MATHS WORKSHEET I 2023-24 CLASS: XII CHAPTER : VECTORS

	MCQS
Q1	The area of a parallelogram whose adjacent sides represented by the vectors $2\hat{i} - 3\hat{k}$ and $4\hat{i} + 2\hat{j}$ is
	(a) 10 (b)14 (c) $\sqrt{11}$ (d) $4\sqrt{14}$
Q2	For what value of `a' , the vectors $2\hat{i} - 3\hat{j} + 4\hat{k}$ and $a\hat{i} + 6\hat{j} - 8\hat{k}$ are collinear
	(a) 3 (b) 4 (c) -4 (d) -3
Q3	If $\left \vec{a} \times \vec{b} \right ^2 = \left(\vec{a} \cdot \vec{b} \right)^2 = 400$ and $\left \vec{a} \right = 5$ then $\left \vec{b} \right $ is
	(a) 3 (b)4 (c) 7 (d)10
Q4	If $\vec{a} = 2\hat{\imath} + 3\hat{\jmath} - 5\hat{k}$ and $\vec{b} = m\hat{\imath} + n\hat{\jmath} + 12\hat{k}$ and $\vec{a} \times \vec{b} = 0$ then (m,n) is
	(a) $\left(\frac{-24}{5}, \frac{-36}{5}\right)$ (b) $\left(\frac{24}{5}, \frac{36}{5}\right)$
	(c) $\left(\frac{24}{5}, \frac{-36}{5}\right)$
	(d) $\left(\frac{-24}{5}, \frac{36}{5}\right)$
Q 5	If θ is the angle between any two vectors \vec{a} and \vec{b} , then $ \vec{a}.\vec{b} =$
	$ \vec{a} \times \vec{b} $ when θ is equal to
	(a) 0
	(b) $\frac{1}{4}$

	(c) $\frac{\pi}{3}$	
	(d) $\frac{\pi}{6}$	
Noto	For O No 6 to 10 use constate sheet to solve and attach with	
Note	worksheet.	
Q 6	If \vec{a} and \vec{b} are perpendicular vectors such that $ \vec{a} + \vec{b} = 13$ and $ \vec{a} = 5$, Find $ \vec{b} $.	
Q 7	If $\vec{a} = 2\hat{\imath} + 2\hat{\jmath} + 3\hat{k}$, $\vec{b} = -\hat{\imath} + 2\hat{\jmath} + \hat{k}$ and $\vec{c} = 3\hat{\imath} + \hat{\jmath}$ are such that	
	$\vec{a} + \lambda \vec{b}$ is perpendicular to \vec{c} ,then find λ .	
Q 8	The scalar product of vector $i + j + k$ with the unit vector along the	
	sum of vectors $2i + 4j - 5k$ and $\lambda i + 2j + 3k$ is equal to one. find the value of λ .	
Q 9	If \vec{a} , \vec{b} and \vec{c} are three vectors such that $ \vec{a} = 3$, $ \vec{b} = 4$ and $ \vec{c} = 5$ and each one of these is perpendicular to the sum of other two, find $ \vec{a} + \vec{b} + \vec{c} $.	
Q 10	Let $\vec{a} = \hat{i} - \hat{j}$, $\vec{b} = 3\hat{j} - \hat{k}$ and $\vec{c} = 7\hat{i} - \hat{k}$. Find a vector \vec{d} which is	
	perpendicular to both \vec{a} and \vec{b} and $\vec{c} \cdot \vec{d} = 1$.	
Q11	If $\vec{a} = \vec{i} + \vec{j} + \vec{k}$, $\vec{c} = \vec{j} - \vec{k}$, then find a vector \vec{b} such that $\vec{a} \times \vec{b} = \vec{c}$	
	and $\vec{a} \cdot \vec{b} = 3$.	
SPACE For Rough Work :		

KENDRIYA VIDYALAYA SANGATHAN AHMEDABAD REGION MATHS WORKSHEET II 2023-24 CLASS: XII CHAPTER : VECTORS

	MCQS
Q1	The area of the parallelogram whose diagonals are $\hat{k} + \hat{j}$ and $\hat{k} + \hat{i}$ is
	(a) $\frac{\sqrt{3}}{2}$
	$(b)\frac{3}{2}$
	(c) 3
	(d)√3
Q2	If $ \vec{a} = 2$, $ \vec{b} = 5$ and $ \vec{a} \times \vec{b} = 8$, then $ \vec{a} - \vec{b} $
	(a) 3
	(c) 17
	(d) 14
Q3	If $\vec{a} = 7\hat{i} + \hat{j} - 4\hat{k}$ and $\vec{b} = 2\hat{i} - 3\hat{j} + 4\hat{k}$, then the projection of
	$\vec{a} \text{ on } \vec{b}$ is
	(a) $\frac{1}{7}$
	(b) $\frac{5}{7}$
	(c) $\frac{8}{7}$
	$(d)\frac{9}{7}$
Q4	If \vec{a} and \vec{b} are two vectors such that $ \vec{a} = \frac{1}{2}$, $ \vec{b} = \frac{4}{\sqrt{3}}$ and
	$ \vec{a} \times \vec{b} = \frac{1}{\sqrt{3}}$ then find $ \vec{a} \cdot \vec{b} $.
	(a) 2
	(b) 3 (c) 1
	(d) 5
Q 5	A vector in the direction of $5\hat{i} - \hat{j} + 2\hat{k}$ which has magnitude 8 units is
	(a) $40\hat{\imath} - 8\hat{\jmath} + 16\hat{k}$
	(b) $\frac{40\hat{\imath}-8\hat{\jmath}+16\hat{k}}{\sqrt{20}}$
	γ 30

	(c) $\frac{5\hat{\iota}-\hat{\jmath}+2\hat{k}}{\sqrt{2\hat{\iota}}}$	
	(d) none of these	
	If $ \vec{a} = 2$, $ \vec{b} = 5$ and $ \vec{a} \times \vec{b} = 8$,then $ \vec{a} - \vec{b} $	
	(a) 3 (b) 12 (c) 17 (d) 14	
Note	For Q No 6 to 10 use separate sheet to solve and attach with worksheet	
Q 6	Find the area of triangle with vertices (1,1,1), (1,2,3) and (2,3,1)	
Q 7	Find a unit vector perpendicular to each of the vectors $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$	
	Where $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$	
Q 8	If \vec{a} , \vec{b} and \vec{c} be three vectors such that \vec{a} , $+\vec{b} + \vec{c} = 0$ and $ \vec{a} = 3$, $ \vec{b} = 5$ & $ \vec{c} = 7$ find the angle between \vec{a} , and \vec{b}	
Q 9	If \vec{a} and \vec{b} are two vectors such that $ \vec{a} = \frac{1}{2}$, $ \vec{b} = \frac{4}{\sqrt{2}}$ and	
	$\left \vec{a} \times \vec{b}\right = \frac{1}{\sqrt{3}}$ then $\left \vec{a} \cdot \vec{b}\right $ find.	
Q 10	Three vectors \vec{a} , \vec{b} and \vec{c} satisfy the condition $\vec{a} + \vec{b} + \vec{c} = 0$. Evaluate the quantity.	
	$\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$, if $ \vec{a} = 1$, $ \vec{b} = 4$, $ \vec{c} = 2$	
Q11	Let $\vec{a} = \vec{i} + 4\vec{j} + 2\vec{k}$, $\vec{b} = 3\vec{i} - 2\vec{j} + 7\vec{k}$ and $\vec{c} = 2\vec{i} - \vec{j} + 4\vec{k}$. Find a vector \vec{p} which is perpendicular to both \vec{a} , and \vec{b} and $\vec{p} \cdot \vec{c} = 18$.	
Q12	If $\vec{a} = 3\hat{i} - \hat{j}$ and $\vec{b} = 2\hat{i} + \hat{j} - 3\hat{k}$, then express $\vec{b} = \vec{b_1} + \vec{b_2}$ where $\vec{b_1}$ is parallel to \vec{a} and $\vec{b_2}$ is perpendicular to \vec{a}	
SPACE For Rough Work :		