KENDRIYA VIDYALAYA SANGATHAN AHMEDABAD REGION MATHS WORKSHEET I 2023-24
 CLASS: XII
 CHAPTER: VECTORS

	MCQS
Q1	The area of a parallelogram whose adjacent sides represented by the vectors $2 \hat{\imath}-3 \hat{k}$ and $4 \hat{\imath}+2 \hat{\jmath}$ is (a) 10 (b) 14 (c) $\sqrt{11}$ (d) $4 \sqrt{14}$
Q2	For what value of 'a' , the vectors $2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $a \hat{i}+6 \hat{j}-8 \hat{k}$ are collinear (a) 3 (b) 4 (c) -4 (d) -3
Q3	If $\|\vec{a} \times \vec{b}\|^{2}=(\vec{a} . \vec{b})^{2}=400$ and $\|\vec{a}\|=5$ then $\|\vec{b}\|$ is (a) 3 (b) 4 (c) 7 (d) 10
If $\vec{a}=2 \hat{\imath}+3 \hat{\jmath}-5 \hat{k}$ and $\vec{b}=m \hat{\imath}+n \hat{\jmath}+12 \hat{k}$ and $\vec{a} \times \vec{b}=0$ then (m,n) is Q4 5 (a) $\left(\frac{-24}{5}, \frac{-36}{5}\right)$ (b) $\left(\frac{24}{5}, \frac{36}{5}\right)$ (c) $\left.\frac{24}{5}, \frac{-36}{5}\right)$ (d) $\left(\frac{-24}{5}, \frac{36}{5}\right)$ If θ is the angle between any two vectors \vec{a} and \vec{b}, then $\|\vec{a} . \vec{b}\|=$ $\|\vec{a} \times \vec{b}\|$ when θ is equal to (a) 0 (b) $\frac{\pi}{4}$	

	(c) $\frac{\pi}{3}$ (d) $\frac{\pi}{6}$
Note	For Q No 6 to 10 use separate sheet to solve and attach with worksheet.
Q 6	If \vec{a} and \vec{b} are perpendicular vectors such that $\|\vec{a}+\vec{b}\|=13$ and $\|\vec{a}\|=5, ~ F i n d ~$ $b$$\|.$

KENDRIYA VIDYALAYA SANGATHAN AHMEDABAD REGION
 MATHS WORKSHEET II 2023-24
 CLASS: XII
 CHAPTER: VECTORS

	MCQS
Q1	The area of the parallelogram whose diagonals are $\hat{k}+\hat{\jmath}$ and $\hat{k}+\hat{\imath}$ is (a) $\frac{\sqrt{3}}{2}$ (b) $\frac{3}{2}$ (c) 3 (d) $\sqrt{3}$
Q2	If $\|\vec{a}\|=2,\|\vec{b}\|=5$ and $\|\vec{a} \times \vec{b}\|=8$, then $\|\vec{a}-\vec{b}\|$ (a) 3 (b) 12 (c) 17 (d) 14
Q3	If $\vec{a}=7 \hat{i}+\hat{j}-4 \hat{k}$ and $\vec{b}=2 \hat{i}-3 \hat{j}+4 \hat{k}$, then the projection of \vec{a} on \vec{b} is (a) $\frac{1}{7}$ (b) $\frac{5}{7}$ (c) $\frac{8}{7}$ (d) $\frac{9}{7}$
Q4	If \vec{a} and \vec{b} are two vectors such that $\|\vec{a}\|=\frac{1}{2},\|\vec{b}\|=\frac{4}{\sqrt{3}}$ and $\|\vec{a} \times \vec{b}\|=\frac{1}{\sqrt{3}}$ then find $\|\vec{a} \cdot \vec{b}\|$. (a) 2 (b) 3 (c) 1 (d) 5
Q 5	A vector in the direction of $5 \hat{\imath}-\hat{\jmath}+2 \hat{k}$ which has magnitude 8 units is (a) $40 \hat{\imath}-8 \hat{\jmath}+16 \hat{k}$ (b) $\frac{40 \hat{\imath}-8 \hat{\jmath}+16 \hat{k}}{\sqrt{30}}$

	(c) $\frac{5 \hat{\imath}-\hat{\jmath}+2 \hat{k}}{\sqrt{30}}$ (d) none of these
	If $\|\vec{a}\|=2,\|\vec{b}\|=5$ and $\|\vec{a} \times \vec{b}\|=8$,then $\|\vec{a}-\vec{b}\|$ (a) 3 (b) 12 (c) 17 (d) 14
Note	For Q No 6 to 10 use separate sheet to solve and attach with worksheet.
Q 6	Find the area of triangle with vertices (1,1,1), (1,2,3) and ($2,3,1$)
Q 7	Find a unit vector perpendicular to each of the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ Where $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}$
Q 8	If \vec{a}, \vec{b} and \vec{c} be three vectors such that $\vec{a}+\vec{b}+\vec{c}=0$ and $\|\vec{a}\|=$ $3,\|\vec{b}\|=5 \&\|\vec{c}\|=7$ find the angle between \vec{a}, and \vec{b}
Q 9	If \vec{a} and \vec{b} are two vectors such that $\|\vec{a}\|=\frac{1}{2},\|\vec{b}\|=\frac{4}{\sqrt{3}}$ and $\|\vec{a} \times \vec{b}\|=\frac{1}{\sqrt{3}}$ then $\|\vec{a} \cdot \vec{b}\|$ find.
Q 10	Three vectors \vec{a}, \vec{b} and \vec{c} satisfy the condition $\vec{a}+\vec{b}+\vec{c}=0$. Evaluate the quantity. $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$, if $\|\vec{a}\|=1,\|\vec{b}\|=4,\|\vec{c}\|=2$
Q11	Let $\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$. Find a vector \vec{p} which is perpendicular to both \vec{a}, and \vec{b} and $\vec{p} \cdot \vec{c}=18$.
Q12	If $\vec{a}=3 \hat{i}-\hat{j}$ and $\vec{b}=2 \hat{i}+\hat{j}-3 \hat{k}$, then express $\vec{b}=\overrightarrow{b_{1}}+\overrightarrow{b_{2}}$ where $\overrightarrow{b_{1}}$ is parallel to \vec{a} and $\overrightarrow{b_{2}}$ is perpendicular to \vec{a}
SPAC	For Rough Work :

