CLASS: XII

CHAPTER: THREE DIMENSIONAL GEOMETRY

	MCQS
Q. 1: -	The direction cosines of the line joining $A(0,7,10)$ and $B(-1,6,6)$ are (a) $(1 / 3 \sqrt{ } 2,1 / 3 \sqrt{ } 2,4 / 3 \sqrt{ } 2)$ (b) $(1 / 3 \sqrt{ } 2,4 / 3 \sqrt{ } 2,1 / 3 \sqrt{ } 2)$ (c) $(1 / 3 \sqrt{ } 2,1 / 3 \sqrt{ } 2,1 / 3 \sqrt{ } 2)$ (d) $(4 / 3 \sqrt{ } 2,1 / 3 \sqrt{ } 2,4 / 3 \sqrt{ } 2)$
Q. 2: -	If $\mathrm{I}, \mathrm{m}, \mathrm{n}$ be the d.c's of a line then $l^{2}+m^{2}+n^{2}$ is equal to (a) 1 (b) 2 (c) 3 (d) 2
Q. 3: -	The shortest distance between the two lines are zero if the lines are (a) Intersecting (b) parallel (c) Skew (d) none of these
Q. 4: -	Assertion : If the cartesian equation of a line is $\frac{(x-5)}{3}=\frac{y+4}{7}=\frac{z-6}{2}$ then its vector form is $r=5 i-4 j+6 k+\lambda(3 i+7 j+2 k)$. Reason : The cartesian equation of the line which passes through the point $(-2,4,-5)$ and parallel to the line given by $\frac{(x+3)}{3}=\frac{y-4}{5}=\frac{z+8}{6}$ is $\frac{(x+3)}{3}=\frac{y-4}{5}=\frac{z+8}{6}$ (a) A is true, R is true , R is correct explanation for A (b) A is true , R is true , R is not correct explanation for A (c) A is true, R is false

	(d) A is false, R is true.
Q. 5: -	Assertion: The three lines with direction cosines $\frac{12}{13}, \frac{-3}{13}, \frac{-4}{13}$ and $\frac{4}{13}, \frac{12}{13}, \frac{3}{13}$ and $\frac{3}{13}, \frac{-4}{13}, \frac{12}{13}$ are mutually perpendicular. Reason : The line through the points $(1,-1,2)$ and $(3,4,-2)$ is perpendicular to the line through the points $(0,3,2)$ and $(3,5,6)$. (a) A is true, R is true, R is correct explanation for A (b) A is true, R is true, R is not correct explanation for A (c) A is true, R is false (d) A is false, R is true.
NOTE: FOR Q NO 6 TO 10 USE SEPARATE SHEET TO SOLVE AND ATTACH WITH WORKSHEET.	
Q. 6: -	Find the values of p so that the lines $\frac{1-x}{3}=\frac{7 y-14}{2 p}=\frac{z-3}{2}$ and $\frac{7-7 x}{3 p}=\frac{y-5}{1}=\frac{6-z}{5}$ are at right angles.
Q. 7: -	If a line makes angles $90^{\circ}, 60^{\circ}, 30^{\circ}$ with the x, y and z axes respectively, find its direction cosines
Q. 8: -	Find the shortest distance between the lines $r=(4 i-j)+\lambda(i+2 j-3 k)$ and $r=(i-j+2 k)+\mathbf{v}(2 i+4 j-5 k)$
Q. 9: -	Prove that the line through $A(0,-1,-1)$ and $B(4,5,1)$ intersects the line through $C(3,9,4)$ and $D(-4,4,4)$.
Q. 10: -	Find the perpendicular distance of the point $(1,0,0)$ from the line $\frac{x-1}{2}=\frac{y+1}{-3}=\frac{z+10}{8}$. Also find the coordinates of the foot of the perpendicular and the equation of the perpendicular.

CLASS: XII

CHAPTER: THREE DIMENSIONAL GEOMETRY

	MCQS
Q. 1: -	If the direction cosines of a line are k, k, k, then (A) $k>0$ (B) $0<\mathrm{k}<1$ (C) $k=1$ (D) $\mathrm{k}=1 / \sqrt{ } 3$ or $-1 / \sqrt{ } 3$
Q. 2: -	The length of perpendicular from origin to the line $\vec{r}=\left(4 i^{\wedge}+2 j^{\wedge}+4 k^{\wedge}\right)+\lambda\left(3 i^{\wedge}+4 j^{\wedge}-5 k^{\wedge}\right)$ is (a) 2 (b) $2 \sqrt{ } 3$ (c) 6 (d) 7
Q. 3: -	The equation of y-axis in space is (a) $x=y=0$ (b) $x=z=0$ (c) $y=z=0$ (d) $y=0$
Q. 4: -	Assertion : The points $(1,2,3),(-2,3,4)$ and $(7,0,1)$ are collinear. Reason : If a line makes angles $\frac{\pi}{2}, \frac{3 \pi}{4}$ and $\frac{\pi}{4}$ with X, Y, and Z-axes respectively, then its direction cosines are $0,-1 / \sqrt{ } 2$ and $1 / \sqrt{ } 2$ (a) A is true , R is true , R is correct explanation for A (b) A is true, R is true, R is not correct explanation for A (c) A is true, R is false (d) A is false , R is true.

Q. 5: - \quad Assertion: The pair of lines given by $\mathrm{r}=\mathrm{i}-\mathrm{j}+\lambda(2 \mathrm{i}+\mathrm{k})$ and $\mathrm{r}=2 \mathrm{i}-\mathrm{k}+\mathbf{v}(\mathrm{i}+\mathrm{j}-\mathrm{k})$ intersect

Reason : Two lines intersect each other, if they are not parallel and shortest distance $=0$.
(a) A is true, R is true , R is correct explanation for A
(b) A is true, R is true, R is not correct explanation for A
(c) A is true, R is false
(d) A is false , R is true.

NOTE: FOR Q NO 6 TO 10 USE SEPARATE SHEET TO SOLVE AND ATTACH WITH WORKSHEET.
Q. 6: - \quad Show that the lines $\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1} \quad$ and $\quad \frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ are perpendicular
Q. 7: - Find the vector and Cartesian equation of the lines that passes through the origin and $(5,-2,3)$
Q. 8: - \quad Find the equation of the line passing through the point $(-1,3,-2)$ and perpendicular to the lines $\quad \frac{x}{1}=\frac{y}{2}=\frac{z}{3} \quad$ and $\quad \frac{(x+2)}{-3}=\frac{y-1}{2}=\frac{z+1}{5}$
Q. 9: - \quad Find the foot of the perpendicular from the point $\mathrm{P}(0,2,3)$ on the line $\frac{x+3}{5}=\frac{y-1}{2}=\frac{z+4}{3}$. Also find the length of the perpendicular.
Q. 10: - A line makes angles a, β, y and δ with the diagonals of a cube, prove that $\cos ^{2} a+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=\frac{4}{3}$

