KENDRIYA VIDYALAYA SANGATHAN AHMEDABAD REGION MATHS WORKSHEET I 2023-24
 CLASS: XII
 CHAPTER: LINEAR PROGRAMMING

	MCQS
Q1	Solution set of the inequality $2 x+y>5$ is $\ldots \ldots$. (a) The half plane containing origin (b) The open half plane above the line not containing origin (c) $x y$ - plane excepts the points on the line $2 x+y=5$ (d) None of these
Q2	The point at which the maximum value of $Z=3 x+2 y$ subject to the constraints $x+2 y \leq 2, x \geq 0, y \geq 0$ is \qquad (a) $(0,0)$ (b) $(1.5,-1.5)$ (c) $(2,0)$ (d) $(0,2)$
Q3	The optimal value of the objective function is attained at the points. \qquad (a) given by intersection of inequations with the axes only (b) given by intersection of inequations with X - axis only (c) given by corner points of the feasible region (d) None of these
Q4	The shaded region in the given figure is a graph of \qquad (a) $4 x-2 y \leq 3$ (b) $4 x-2 y \leq-3$ (c) $2 x-4 y \geq 3$ (d) $2 x-4 y \leq-3$
Q 5	The feasible region of the inequality $x+y \leq 1$ and $x-y \leq 1$ lies in quadrants. (a) Only I and II (b) Only I and III (c) Only II and III

	(d) All the four
Note:	For Q No 6 to 9 use separate sheet to solve and attach with worksheet.
Q 6	Minimise $Z=3 x+2 y$ $\begin{aligned} \text { subject to the constraints: } & x+y \geq 8 \\ & 3 x+5 y \leq 15 \\ & x \geq 0, y \geq 0 \end{aligned}$
Q 7	The vertices of the feasible region determined by some linear constraints are $(0,2),(1,1),(3,3),(1,5)$. Let $Z=p x+$ qy where p, $q>0$. Find the condition on p and q so that the maximum of Z occurs at both the points $(3,3)$ and $(1,5)$
Q 8	Maximise $Z=5 x+3 y$ subject to $3 x+5 y \leq 15,5 x+2 y \leq 10, x \geq 0, y \geq 0$
Q 9	A factory makes tennis rackets and cricket bats. A tennis racket takes 1.5 hours of machine time and 3 hours of craftman's time in its making while a cricket bat takes 3 hours of machine time and 1 hour of craftman's time. In a day, the factory has the availability of not more than 42 hours of machine time and 24 hours of craftsman's time. If the profit on a racket and on a bat is ₹20 and ₹10 respectively, find the number of tennis rackets and cricket bats that the factory must manufacture to earn the maximum profit. Make it as an $\angle P P$ and solve graphically.
	Space for Rough Work

KENDRIYA VIDYALAYA SANGATHAN AHMEDABAD REGION

 MATHS WORKSHEET II 2023-24
CLASS: XII

CHAPTER: LINEAR PROGRAMMING

	MCQS
Q1	Inequation $\mathrm{y}-\mathrm{x} \leq 0$ represents (a) The half plane that contains the positive X-axis (b) The half plane below the line $y=x$ and containing the line $y=x$ (c) Half plane that contains the negative X-axis (d) None of these
Q2	The solution set of the constraints $x+2 y \geq 11,3 x+4 y \leq 30,2 x+$ $5 y \leq 30, x \geq 0, y \geq 0$ includes the point. (a) $(2,3)$ (b) $(3,2)$ (c) $(3,4)$ (d) $(4,3)$
Q3	The feasible solution for a LPP is shown in Figure Let $z=3 x-4 y$ be the objective function. Minimum of Z occurs at (a) $(0,0)$ (b) $(0,8)$ (c) $(5,0)$ (d) $(4,10)$
Q4	The feasible solution of LPP (a) satisfy all the constraints (b) satisfy some of the constraints (c) always corner points of feasible solution (d) always optimal value of objective function
Q 5	Let the constraints in the given problem is represented by the following inequalities: $x+y \leq 20 ; 360 x+240 y \leq 5760$ and $x, y \geq 0$. Then which of the following point lie in its feasible region. (a) $(0,24)$ (b) $(8,12)$

$\left.\left.\begin{array}{|l|l|}\hline & \begin{array}{l}\text { (c) }(20,2) \\ \text { (d) None of these }\end{array} \\ \hline \text { Note: } & \begin{array}{l}\text { For Q No } 6 \text { to } 9 \text { use separate sheet to solve and attach with } \\ \text { worksheet. }\end{array} \\ \hline \text { Q 6 } & \begin{array}{l}\text { The corner points of the bounded feasible region are }(0,1),(0,7),(2, \\ 7),(6,3)(6,0)(1,0) . \\ \text { At which point } Z \text { is minimum for the objective function } Z=3 x-y\end{array} \\ \hline \text { Q 7 8 } & \begin{array}{l}\text { Find the maximum value of } z=3 x+2 y \text { subject to constraints } \\ x+2 y \leq 10,3 x+y \leq 15 \text { and } x, y \geq 0\end{array} \\ \hline \text { Q Solve graphically: Minimise } Z=-3 x+4 y \\ \text { subject to } x+2 y \leq 8,3 x+2 y \leq 12, x \geq 0, y \geq 0\end{array} \right\rvert\, \begin{array}{l}\text { One kind of cake requires } 200 \mathrm{~g} \text { of flour and } 25 \mathrm{~g} \text { of fat, and another } \\ \text { kind of cake requires } 100 \mathrm{~g} \text { of flour and } 50 \mathrm{~g} \text { of fat. Find the } \\ \text { maximum number of cakes which can be made from } 5 \text { kg of flour and } \\ 1 \text { kg of fat assuming that there is no shortage of the other ingredients } \\ \text { used in making the cakes. Formulate the above as a linear } \\ \text { programming problem and solve graphically. } \\ \text { Space for Rough Work }\end{array}\right\}$

