KENDRIYA VIDYALAYA SANGATHAN AHMEDABAD REGION
 MATHS WORKSHEET I 2023-24
 CLASS: XII
 CHAPTER : APPLICATION OF DERIVATIVES

	MCQS
Q1	The function $f(x)=a x+b$ is strictly decreasing for all $x \in R$ iff: (a) $a=0$ (b) $a<0$ (c) $a>0$ (d) none of these)
Q2	The rate of change of the area of a circle with respect to its radius r at $r=6 \mathrm{~cm}$ is (a) 10π (b) 12π (c) 8π (d) 11π
Q3	The function $f(x)=\cos x-\sin x$ has maximum or minimum value at $x=$ (a) $\frac{\pi}{4}$ (b) $\frac{3 \pi}{4}$ (c) $\frac{\pi}{2}$ (d) $\frac{\pi}{3}$
Q4	Which of the following functions is decreasing on ($0, \pi / 2$) (a) $\sin 2 x$ (b) $\tan x$ (c) $\cos x$ (d) $\cos 3 x$
Q 5	A cylindrical vessel of radius 0.5 m is filled with oil at the rate of 0.25 $\pi \mathrm{cu} / \mathrm{min}$. The rate at which oil is rising is (a) $1 \mathrm{~m} / \mathrm{min}$ (b) $2 \mathrm{~m} / \mathrm{min}$ (c) $5 \mathrm{~m} / \mathrm{min}$ (d) $1.25 \mathrm{~m} / \mathrm{min}$
Note:	For Q No 6 to 10 use separate sheet to solve and attach with worksheet.
Q 6	Sand is pouring from a pipe at the rate of $12 \mathrm{~cm}^{3} / \mathrm{s}$. The falling sand forms a cone on the ground in such a way that the height of the cone

	is always one-sixth of the radius of the base. How fast is the height of the sand cone increasing when the height is 4 cm ?
Q 7	Find the local maxima and local minima, if any of the function $f(x)$, given by $f(x)=\sin x+\cos x, 0<x<n / 2$.
Q 8 9	The relation between the height of the plant $(y$ in cm) with respect to exposure to sunlight is governed by the following equation $y=4 x-\frac{1}{2} x^{2}$ where x is the number of days exposed to sunlight. What will be the rate of growth of the plant with respect to sunlight ?
Q10	Find the values of x for which $y=[x(x-2)]^{2}$ is an increasing function to be made into a square and the other into a circle. What should be the length of the two pieces so that the combined area of the square and the circle is minimum?
Space for Rough Work	

